[image: image1.png]Distributed Data Acquisition System for the First Detector
on the SPHERE Setup

1. V. Slepnev, V. M. Slepnev

‘Bulgaria, Varna. September 2001

Features:

‘Multilevel software+hardware synchronization
Scalability
Twice faster than previous DAQ system

System components:

'Frontend ADCs, TDCs, Scalers

Intelligent CAMAC controllers CCPC5 running Linux
Trigger logic block LT3320 on LATTICE 3320 FPGA
Event builder — dedicated PC workstation

Perfomance:

‘event synch — 15us
16-bit data readout — 1.6us
no additional dead time

While preparation of the SPHERE electronics to eXperiments on Nuclotron beams in March
2000 it was found that DAQ system is not operating due to system HDD failure on VME station
running OS-9 which controlled FASTBUS electronics. They decided to move frontend electronics
to CAMAC crates for experiments on SYNCHROPHASOTRON polarized deuteron beams. It
was necessary to have 25 ADC channels, 20 TDC channels and 10 scalers in this setup.

It was necessary to organize synchronous data readout within three crates with both accelerator
spill and event trigger and provide online access to data. As a result of 2-month efforts we have
built new data acquisition system shown on Fig.??.

“This DAQ system has 5 main components:
- frontend ADCs, TDCs, scalers

- synchronization block

- CAMAC controllers

- event builder

[image: image2.png]- software

All frontend electronics blocks we put in three CAMAC crates. The crate with trigger block
LT3320 we refer as master crate and two others as slave in terms of synchronization.

There were 4 control signals interfacing DAQ electronics with SPHERE trigger. The signals
for start of spill, end of spill and event trigger, generated by trigger electronics, were input signals
for our DAQ system and reset trigger signal was sent back to SPHERE trigger.

For processing of SPHERE synchronization signals we used trigger logic block LT3320. It is
based on in-system programmable LATTICE-3320 FPGA chip. It has NIM-level 16 inputs and 16
outputs on front panel and also TTL 16-channel bidirectional parallel bus oh the rear side. The
state of synchronization block is accessible through CAMAC dataway. The parallel port interface
connector can be attached to block for downloading the logic program directly from PC where
logic scheme is designed. For SPHERE setup we programmed the block in following way: 5 inputs
SoS (Start-of-Spill), EoS (End-of-Spill), TRIG (Trigger), CR1 and CR2 (slave-Crate-Ready); 2
outputs: EV and ResetTRIG. The signals were connected as shown in Fig.??. The output EV of
synchronization block indicated trigger event for master and slave crate controllers. ResetTRIG
output on synchronization block we used for unblocking of SPHERE trigger system after each
completed event readout. Besides specified the SFS (Start-For-Slaves) signal was generated by
master controller was distributed to each slave controller and indicated spill time interval when
data taking was enabled.

The event data consolidation and decoding was performed by the dedicated PC workstation
referred as EB (Event-Builder). It was running Linux OS. We developed our software programs
based on ROOT package for Online data processing, storage and live data representation and also
for controlling the operation of the DAQ system with user-friendly simple graphical interface.

CAMAC crate controllers and event builder was interconnected with 10 MBit Ethernet. Event
builder PC also had connection to JINR backbone ethernet and thus was accessible within JINR
LAN. That aspect allowed live data analysis for scientists directly on their workstations. For
perfomance and security reasons the internal network was isolated with IP router.

The software synchronization and data flow were organized on top of NFS (Network-File-
System) layer. Service parameters, CAMAC commands and data format were passed from EB to
controllers with one data file, and controllers reported their status in another file. Each crate con-
troller wrote experimental data into separate file which were consolidated by EB each accelerator
cycle.

The process of data file consolidation requires exact match of run and cycle number of all crate
controllers. Moreover, each event must be identified and matched in all controllers simultaneously
for data to be valid. We have organized multilevel synchronization handshake for master and
slave crate controllers for both spill and trigger. The time between spills of 10 seconds is big
enough comparing to delays in ethernet and NFS layer and we used complex handshake for spill
synchronization. Software handshake, when cycle number was passed in a file and hardware
handshake with EV, SFS and CR signals. The event trigger synchronization was complete in
hardware by two signals: EV and CR. The complete master and slave crate synchronization
procedure is shown step-by-step on Fig. ??. Ideally one could use easy command-acknowledge

[image: image3.png]scheme but in reality we put timeout checks in every synchronization stage so our system could
restore from cycle drop or any other non-standard situations automatically without loss of data.

Most part of time between spills the controllers are in normal multitask mode and processes
service requests and wait spill. After the spill signal is detected, master controller synchronizes
with slaves and they go into Real-Time single-task mode to eliminate delays for task switching and
thus minimize system dead time. On event signal master and slave controllers synchronizes again
and begin processing CAMAC datataking commands. Once the spill is over or timeout happened
each controller finishes Real-Time mode, go back to multitasking and dumps captured data and
status information in files, got acknowledge from EB that data is saved and wait next spill.

As controllers are most time in wait loop, they are available for live data representation.
Each controller has output to VGA monitor and we attached some monitors for displaying live
histograms and numbers in convenient manner.

We reached as low intercrate synchronization time that was less than time needed for frontend
ADCs and TDCs to complete A-D convertion and thus real system dead time was defined only by
frontend electronics.

We used Linux OS which allowed us to fast and clear program developing and debugging and
it had shown good near-Real-Time parameters and multitasking simultaneously and we could get
twice more data within one spill comparing to old VME DAQ setup.

This system had shown it’s full operating power during SYNCHROPHASOTRON run and
demonstrated the following main characteristics:

intercrate synchronization time — 15us

16-bit data readout time — 1.6us

[image: image4.png]ETHERNET

LT-3320 LOCAL NETW OR?\ CCPCS
TN

SoS__‘ E i =
TRIG — o)
EoS___1g SCALERS
cei__[g | T
L o®] [~

g

é\
E "TT
J E

™
900
@]
=
%

CCPCS
M
EEREE 5 []
QpC |
SCALERS | (M
Voo !——‘
i e
CCPCs

CPU AMD K 6-2 350 MHz
RAM 64 MB

HDD 4GB —
VIDEO PCI2MB ®
CAMAC ISA-bus

e
N\~

LT-3320

EB
NIM INPUT 16
NIM OUTPUT 16
DELAY 15 ns

Figure 1: Block diagram of the New SPHERE Data Aquisition System

[image: image5.png]MASTER SLAVE
Start : f
G| Read NAF L CR | Start
o 7Wl'lte P(.)ST] EV > Wait SoS
Go realtime <-CR__|
Wait BUSY .. .EV __ | Go realtime
'SoS NAFs «CR__| SoS NAFs
Wait TRIG SFS Wait SFS
To | Wait —EY—»! Wait EV
‘Wait BUSY eV T
——————————— -t » Event NAFs
Tr Event NAFs <« R
el ______|
EoS ~SFS
‘Wait BUSY CR_ | EoSde;ﬂoFgT
: ea
_EoS NAFs CR__| Flush buffer to HDD
Flush buffer to HDD
Write POST
Write STATUS
'End of Spill 'End of Spill

'Figure 2: Master and slave synchronization procedure step-by-step

PAGE
181

