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In [1] we applied a nonlinear analysis to traffic measurements obtained at the input of a
medium size LAN. The reliable values of the time lag and embedding dimension provided
the application of a layered neural network for identification and reconstruction of the under-
lying dynamical system. The trained neural network reproduced the statistical distribution
of real data, which well fits the log-normal form. The detailed analysis of traffic measure-
ments [2] has shown that the reason of this distribution may be a simple aggregation of
real data. The Principal Components Analysis of traffic series demonstrated that few first
components already form the fundamental part of network traffic, while the residual com-
ponents play a role of small irregular variations that can be interpreted as a stochastic
noise. This result has been confirmed by application of wavelet filtering and Fourier analysis
both to original traffic measurements and individual principal components of original and
filtered data [3]. The applicability of the scheme, developed by A. Kolmogorov [4] for the
homogeneous fragmentation of grains, to the network traffic is discussed.
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Figure 1: The scheme of data acquisition system
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Figure 2: Traffic measurements aggregated with different bin sizes: 0.1 sec, 1 sec, 10 sec
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2. Nonlinear analysis of network traffic

In nonlinear analysis the series {xi} is considered as one-dimensional projec-
tion of a system operating in space ~yi of larger dimension:

~yi = (xi, xi+τ , ..., xi+(m−1)τ). (1)

Here m is the dimension of the underlying system, and τ is a “delay time”,

or the correlation length of series {xi}.

The “phase space reconstruction” includes three main steps:

1. Estimation of the correlation length τ ,

2. Estimation of the embedding dimension m,

3. Reconstruction of the underlying system.

2.1. Estimating the correlation length

In order to choose independent components from {xi}, one may compute the
correlation length τ using the auto-correlation function

C(τ) =

N∑
i=1

(xi+τ − x̄)(xi − x̄)

N∑
i=1

(xi − x̄)2
, x̄ =

1

N

N∑

i=1

xi, (2)

where N is number of points in series. The dependence of the correlation
length against the aggregation bin size is presented in Fig. 3. One can see that

for bin sizes from 0.1 sec up to 10 sec, τ is in acceptable region: τ ∼ 10 sec.
Points separated by the time interval τ can be considered as independent.

2.2. Estimating the embedding dimension

m can be estimated applying the Grassberger-Procaccia algorithm:

Cm
2 (r) =

2

N(N − 1)

∑

i6=j
Θ(r − |yi − yj|), (3)

with the distance between two points given by

|yi − yj| = max
{
|xi − xj|, ..., |xi+(m−1)τ − xj+(m−1)τ |

}
,

where Θ = 1 if its argument is non-negative and 0 otherwise.
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Figure 3: The dependence of the correlation length against the size of the aggregation bin

The slope logCm
2 (r) vs. log r gives the estimate of the embedding dimen-

sion: see Fig. 4. No saturation of the slope with respect to increasing m was
found, which may mean a very high dimension of the time series. We may
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Figure 4: The dependences of
logCm

2 (r) vs. log r for traffic mea-
surements aggregated with 1 sec bin:
τ = 10 sec and m =12, 14, 16, 18

consider traffic measurements as a sum of a regular process and a stochastic

part, related to the high frequency “noise”, that can be eliminated. In order
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to achieve this, we used a discrete wavelet transform based on Daubechies
wavelets. As a result we found that m about 16 ÷ 18 seems to be close to

saturation.

2.3 Reconstruction of underlying system

Reliable values of τ and m provided the application of a layered ANN for

reconstruction of the underlying system. We used the ANN with the feed-
forward architecture: the input layer with m neurons, two hidden layers with

varying number of neurons and one output neuron for getting the predicted
value of the ANN model.
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Figure 5: The result of the ANN approximation of the traffic series

Figure 6 demonstrates packet size distributions (normalized to the interval

[-1,1]) for original measurements (top figure) and for series generated by the
trained ANN (bottom figure). We see that the ANN model quite well repro-

duces the statistical distribution of real data, which seems to be log-normal.

The distribution of ANN weights between the output neuron and second hid-

den layer nodes seems quite interesting: see Fig. 7.
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Figure 6: The distribution of packet sizes (normalized to interval [-1,1]) for: a) original traffic
measurements, and b) generated by the trained ANN
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Figure 7: The distribution of absolute values of weights between the output node and second
hidden layer nodes of the trained ANN
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3. Log-normal distribution of network traffic

Figure 8 shows the packet size distribution for original traffic measurements,
while figures 9, 10 and 11 present distributions for measurements aggregated
with bin sizes 10ms, 100ms and 1 s, correspondingly.

Figure 8: Packet size distribution for
original traffic measurements

Figure 9: Packet size distribution for
traffic measurements aggregated with
bin size 10ms

Figure 10: Packet size distribution for
traffic measurements aggregated with
bin size 100ms

One can clearly see that for aggregation with small windows packet size dis-

tributions have rather chaotic and non-systematic character. However, when
window approaches 1 s (see Fig. 11) the distribution assumes a stable form

that does not change with further increase of the aggregation bin: see Fig. 12
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corresponding to the bin size 10 s.

Figure 11: Packet size distribution for
traffic measurements aggregated with
bin size 1 s: fitting curve corresponds
to function (4)

Figure 12: Packet size distribution for
traffic measurements aggregated with
bin size 10 s: fitting curve corresponds
to function (4)

Distributions in figures 11 and 12 are well approximated by the log-normal
function

f(x) =
A√
2πσ

1

x
exp

[
− 1

2σ2
(lnx− µ)2

]
, (4)

x is the variable, σ and µ are parameters and A is the normalizing multiplier.
However, they did not pass the χ2-test.

The reason is that these distributions are based on the whole set of data,
which corresponds approximately to 20 hours of continuous measurements.

But the traffic series behave differently depending, if measurements were
done during working hours or not. In this connection, we tested only the
daily traffic. The results of this analysis are presented in Table 1.

Table 1: Results of fitting of daily part of packet size distributions aggregated with different
bin sizes by function (4)

Bin, sec ν χ2 α,%
1 47 49.84 32.30
2 47 44.76 52.51
3 47 41.53 65.98
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These results show that the hypothesis (4) is accepted with a high probability:
see also Fig. 13. At the same time it must be noted that the influence of the

inactive period of LAN does not change seriously the fundamental form of
the statistical distribution.

Figure 13: Packet size distribution for
daily traffic measurements aggregated
with bin size 1 s: fitting curve corre-
sponds to the function (4)

We conclude, therefore, that

• the aggregation of traffic measurements forms (starting from some
threshold value of the aggregation window) a statistical distribution,

which does not change its form with further increase of the aggregation
window;

• this distribution is approximated with high accuracy by the log-normal
distribution.

4. Principal component analysis of network traffic

The “Caterpillar”-SSA approach can be used for analysis of time series cor-
responding to a function f(t), t > 0 determined in equidistant points. The

basic “Caterpillar”-SSA scheme includes four main steps:

• transformation of one-dimensional series into multidimensional form,

• singular value decomposition of multidimensional series,

• principal components analysis and selection of feature components,

• reconstruction of one-dimensional series on the basis of selected compo-

nents.
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The transformation of one-dimensional series

xi = f [i] = f [(i− 1)∆t], i = 1, 2, . . . ,M (5)

into multidimensional one is realized by representing (5) in matrix form:

X = (xij)
k,L
i,j=1 =




x1 x2 x3 . . . xL
x2 x3 x4 . . . xL+1

x3 x4 x5 . . . xL+2
...

...
... . . . ...

xk xk+1 xk+2 . . . xM




,

where L < M is called the caterpillar length and k = M − L+ 1.

Then the eigenvalues λi, i = 1, 2, . . . , L and eigenvectors ~Vi, i = 1, 2, . . . , L of
the covariance matrixC = 1

k
XXT are determined. The matrix of eigenvectors

V is used for transition to principal components

Y = V TX = (Y1, Y2, . . . , YL) ,

where Yi (i = 1, 2, . . . , L) are rows of k elements.

The “Caterpillar” length CL has been chosen based on the analysis of the
autocorrelation length τ : we used different values of CL, starting from CL =
12 up to CL = 20.
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Figure 14: Contributions of eigenvalues in percentages for original traffic data. Results are
presented for two cases of the caterpillar length: CL = 12 (left) and 20 (right)
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It is reasonable to assume that distributions, corresponding to leading com-
ponents, may be described by the log-normal distribution. Figure 15 shows

the dependence of χ2/ν versus the number of leading components.
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Figure 15: The dependence of χ2/ν versus the number of leading components

It demonstrates a quit good level of correspondence (α = 22%) of the distri-
bution to the null-hypothesis for N = 3: see also Fig. 16.

Figure 16: Fitting distribution corre-
sponding to 3 leading components by
function (4)

In the region of large N there is a growth of χ2 especially noticeable at N ≥
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15: see Fig. 15. Figure 17 shows the series corresponding to the component
20. It looks like a nonstationary process symmetric against zero mean value.
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Figure 17: Traffic series reconstructed by the caterpillar method (CL = 20) on the basis of
the smallest component

In order to estimate the amount of residual components, which can be elim-

inated from the original series, we divide all components into two parts:

1. first part corresponding to the leading components and responsible for
the log-normal form of the packet size distribution,

2. second part related to residual components, which is described by a sym-

metric statistical distribution and behaves like a stochastic noise.

As criterion for selection of second part the sign test has been used for testing
the symmetry against zero for residual distributions:

µ =
n∑

i=1

Θ(Xi), (6)

where X1, . . . , Xn are observables, n is the sample size, and

Θ(x) =

{
1, x > 0

0, x ≤ 0.

When the null-hypothesis is true the µ distribution is approximated (in case
of large n) by:

P{µ ≤ m | n, p} ≈ Φ

(
m− np+ 0.5
√
np(1− p)

)
,

where Φ is the distribution function of the normal distribution and p = 0.5.
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Figure 18 shows that µ exceeds the reliable confidential level, when number

of residuals is greater 6 for CL = 12 and 11 for CL = 20.
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Figure 18: The dependence µ versus the number of residual components for the caterpillar
length CL = 12 (left figure) and CL = 20 (right figure)
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Figure 19: Dependences of ω2
n versus the number of residual components for two cases of the

caterpillar length: CL = 12 (left figure) and CL = 20 (right figure)

In order to confirm these results, we applied more powerful ω2
n criterion.

It tests the symmetry of the distribution function F (x) of observables
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X1, . . . , Xn, i.e. the null-hypothesis H0: F (x) = 1− F (x):

ω2
n =

n∑

j=1

[
Fn(−X(j))−

n− j + 1

n

]2
,

where X(1) ≤ . . . ≤ X(n) is the variational series constructed on the basis of
observables.

Figure 19 shows that number of residuals k = 6 for CL = 12 and k = 11 for
CL = 20 correspond to the 5% - significance level. This coincides with result
for the sign test.

5. Spectral analysis of traffic measurements

In order to estimate the presence or absence of periodic components and to
evaluate the viability of stochastic noise in the traffic series, we applied the

Lomb spectral method.

The Lomb normalized periodogram (spectral power as a function of angular
frequency ω ≡ 2πf > 0) of one-dimensional time series (5) is defined by

PK(ω) =
1

2π2





[
K∑
i=1

(xi − x̄) cosω(ti − τ)

]2

K∑
i=1

cos2 ω(ti − τ)
+

[
K∑
i=1

(xi − x̄) sinω(ti − τ)

]2

K∑
i=1

sin2 ω(ti − τ)





,

(7)
where

x̄ =
1

K

K∑

i=1

xi, σ2 =
1

K − 1

K∑

i=1

(xi − x̄)2

and τ is defined by the relation

tan(2ωτ) =
K∑

i=1

sin 2ωti/
K∑

i=1

cos 2ωti.

In order to estimate the significance α of a peak in the spectrum PK(ω),

we test the null-hypothesis that the data values are independent Gaussian
random values.

Figure 20 shows the result of application of the Lomb method to the traffic
measurements. The horizontal dashed and dotted lines correspond (from bot-
tom to top) to α = 0.5, 0.1, 0.01, 0.001, respectively. One can see (Fig. 21)

3 highly significant peaks at low frequencies: 0.06, 0.012 and 0.034. For
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Figure 20: The dependence of PK(ω) against the angular frequency ω for traffic measure-
ments: 0 ≤ ω < 2πfc
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Figure 21: The dependence of PK(ω) against the angular frequency ω for traffic measure-
ments: 0 ≤ ω < 0.35

ω > 0.35 together with ω increase, the amplitude is very quickly decreasing
(Fig. 20) without exceeding 5, which corresponds to α ≈ 1. This means that

traffic components related to this part can be interpreted as Gaussian noise.

6. Wavelet filtering of traffic measurements

The function f(t) ∈ L2(R) can be represented in terms of shifts and dilations
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of a low-pass scaling function φ(t) and band-pass wavelet ψ(t):

f(t) =
∑

k

sJkφ(2Jt− k) +
∑

j≥J

∑

k∈Z
djkψ(2jt− k), (8)

Figure 22 shows the dependence of ω2
n versus the number of rejected co-

efficients: 1408 coefficients can be eliminated without exceeding the 5%-
significance level.
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Figure 22: The dependence of ω2
n

values versus the number of rejected
wavelet coefficients

The autocorrelation function can be also used as a criterion for evaluation of
the noisy part: Fig. 23 shows that up to M = 1408 the rejected part can be

considered as noisy.
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Figure 26 shows the dependence of PK(ω) against ω for 3 leading compo-
nents (continuous curve) and for all components of the filtered signal (dashed

curve). This dependence clearly demonstrates that low frequency region of
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Figure 26: The dependence of PK(ω) against the angular frequency ω for 3 first leading
components (continuous curve) and for all components of the filtered signal (dashed curve):
0 ≤ ω < 0.35

traffic series is formed by 3 leading components. At the same time, all fre-
quencies higher ω > 0.35 are suppressed: see Fig. 27.
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Figure 27: The dependence of PK(ω) against the angular frequency ω for 3 first leading
components (continuous curve) and for all components of the filtered signal (dashed curve):
0.35 ≤ ω < 0.8

The dependence (Fig. 28) confirms our previous result concerning the number
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of leading components that forms the fundamental part of information traffic.
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Figure 28: Dependence of χ2/ν versus number of leading components for filtered data

Figure 29 shows the dependences of the ω2
n value versus the number of the

residual components for the caterpillar length CL = 20.
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7. The Kolmogorov’s scheme and network traffic

The log-normal distribution has been first observed by Lucas et al. (1996)
for distributions of packet arrivals aggregated at 100ms. Similar inter-arrival
time distributions have been observed in cellular telephony (1998).

The theoretical explanation of appearance of the log-normal distribution in

natural phenomena was first given by Kolmogorov in 1941. A simplified
explanation of Kolmogorov’s scheme is the following. Suppose that we have
a big rock which crumbles into sand. Then, it can be shown, that the number

of grains at the k-th stage of fragmentation must be

Nk =
k∏

i=1

ni = n1n2 · · ·nk, or logNk =
k∑

i=1

log ni. (9)

The grain sizes Sk are inversely proportional to Nk. Applying the CLT, Kol-

mogorov found that logarithms of grain sizes are normally distributed, i.e.
the distribution of grain sizes is log-normal.
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Figure 30: Shade plot of the CWT coefficients for traffic measurements

The tree-like fragmentation structure at different scales shown in Fig. 30
clearly proves the multiplicative character of network traffic. This result

is in agreement with formula (9) and confirms the applicability of
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Kolmogorov’s scheme to the description of information traffic.

Conclusion

• ANN trained on traffic measurements reproduced the statistical distri-
bution of real data, which well fits the log-normal form [5].

• Detailed analysis has shown that the reason of this distribution is a

simple aggregation of real data [6].

• Applying the “Caterpillar”-SSA approach we demonstrated that few first
components already form the fundamental part of network traffic [7].

• This result has been confirmed by application of wavelet filtering both
to original traffic measurements and individual components of original

and filtered data [8].

• The possibility to apply Kolmogorov’s scheme to network traffic is
demonstrated.
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